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1. Introduction

Elastic band oscillations belong to the class of problems that can be generally considered as
oscillatory problems of axially moving elastic bodies. This class of problems includes: oscillations
of moving filaments in textile industry machines, oscillations of band saws, oscillatory movement
of magnetic bands in audio devices, etc. Such systems are modelled by axially moving strings,
beams, or plates. A great number of researchers have studied the problems of the moving thin
elastic band. Nelson [1] analyzed deterministic transverse oscillations of a thin moving band and
derived relations for determining natural frequencies of this system. Alspaugh [2] explored torsion
oscillations of a thin rectangular moving band which moves at constant speed in the longitudinal
direction. Soler [3] studied the stability of connected transverse and torsional oscillations of a thin
moving band. Ariaratnam and Asokanthan [4] explored torsion oscillations of a moving band
stretched at the ends by a harmonically variable force. They determined the analytical conditions
of stability, and presented them graphically. Wang [5] analyzed a non-linear model of axially
moving bands with end curvatures. Both analytical and numerical results show the impact of
velocity, tensile force and bending radius at the band’s ends upon the system’s dynamic behaviour.
Sund and Fung [6] propose a new dynamic model describing the behaviour between the fluid film
and elastic deformation in a thin foil bearing. The string and beam models describing the magnetic
tape are compared. Tylikowski [7] determined the conditions for uniform stochastic stability of a
moving band by using Lyapunov’s direct method, while Kozin and Milsted [8] determined the
conditions for almost-sure asymptotic stability of a moving band by using the method developed
by the authors. Kozi!c and Pavlovi!c [9] determined the conditions of stochastic stability of a thin
moving elastic strip when it is subjected to the parameters of random excitation that are wide-
band stochastic processes of small intensity. By combining the Khas’minskii method of stochastic
averaging and the procedure for determining the largest Lyapunov exponent, expressions for the
largest Lyapunov exponent with respect to the system parameters have been determined.
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In this paper, the differential equation of torsion oscillations of a moving elastic band is
discretized by using Galerkin’ method. In the opinion of the authors though, the tensile force is
randomly varied. The differential equation of motion is substituted by an equivalent system of
two It #o’s differential equations of the first order. The differential equations are formed by the first
and second statistic moments. By using Hurwitz’s criterion, the conditions of stochastic stability
of the thin moving elastic band are determined. The results obtained have been checked by
applying Lyapunov’s exponent.

2. Discretisation of the equation of motion

The torsional motion of a moving band shown in Fig. 1 will now be considered. Let the band be
supported by frictionless rollers at span L; possess mass r per unit length. Assuming that each
filamentary element of the band moves longitudinally at uniform speed c; the angular velocity of
any point on the band is given by ðcyx þ ytÞ; where y is the angle of twist. In the absence of any
external load on the band, the equation representing the torsional motion of the moving band
with the rectangular cross-section takes the following form (see Ref. [2]).

LðyÞ ¼
@2y
@t2

þ b0
@y
@t

þ ðc2 � c20Þ
@2y
@x2

þ 2c
@2y
@x@t

¼ 0: ð1Þ

In Eq. (1), c20 contains the effects of band tension on the torsional rigidity; it also consists of
variable random tension in the band,

c20 ¼ 4
G

r
b2

h2
þ
s0
r
½1þ f ðtÞ�;

where G is the shear modulus of plate material, b the band thickness, h the band width, s0 the
stress due to initial band tension, b0 the damping coefficient. For the sake of a more concise
representation, the equations will be non-dimensionalized by introducing the following quantities:
x ¼ x=L; t ¼ ct=L; f ¼ hy=b; 2b ¼ b0L=c:
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Fig. 1. Scheme of an axially moving thin elastic band.
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With these definitions, Eq. (1) becomes

LðfÞ ¼
@2f
@t2

þ 2b
@f
@t

þ 4
G

rc2
b2

h2
þ

s0
rc2

� 1þ
s0
rc2

f ðtÞ
� �

@2f

@x2
þ 2

@2f
@x@t

¼ 0: ð2Þ

In order to simplify Eq. (2) further, use will be made of Galerkin’s method to reduce this
equation to a corresponding ordinary differential equation representing only the time-varying
part of the solution. For a trial function, an infinite Fourier sine series will be chosen

fðx; tÞ ¼
XN
n¼1

FnðtÞsin npx: ð3Þ

It can immediately be noticed that the trial function (3) is, in fact, admissible since it satisfies the
boundary conditions at x ¼ 0; 1 given by

f ¼ 0;
@2f

@x2
¼ 0:

Furthermore, by Galerkin’s method it is required thatZ 1

0

LðfÞdf dx ¼ 0: ð4Þ

By substituting Eq. (3) into Eq. (4) and evaluating the integral as indicated, it follows that the
given trial function (3) will satisfy for each n

.FnðtÞ þ 2b ’FnðtÞ þ f½oðnÞ�2 þ gðnÞðtÞgFnðtÞ ¼ 0; ð5Þ

where

½oðnÞ�2 ¼ ðnpÞ2 4
G

rc2
b2

h2
þ

s0
rc2

� 1
� �

; gðnÞðtÞ ¼
s0
rc2

ðnpÞ2f ðtÞ: ð6Þ

The function gðnÞðtÞ is a random parametric excitation. This function is assumed to be a zero
mean, stationary Gaussian process with smooth spectral density S

ðnÞ
f up to the same frequency oðnÞ

which is larger than any characteristic frequency of the system response. The mean and
autocorrelation functions of gðnÞðtÞ are

E
s0
rc2

ðnpÞ2f ðtÞ
� �

¼ 0; E
s0
rc2

ðnpÞ2f ðtÞ
s0
rc2

ðnpÞ2f ðtþ uÞ
� �

¼ 2SðnÞ
f dðuÞ;

where u is dimensionless time delay and dð Þ denotes the Dirac delta function.

3. Mean-square stability

Eq. (5) is a linear differential equation with a stochastic coefficient. In order to derive dynamic
moment equations, Eq. (5) is first replaced by the following two It #o’s stochastic differential
equations:

’X1 ¼ X2;

’X2 ¼ �2bX2 � ½oðnÞ
0 �2X1 � gðnÞðtÞX1: ð7Þ
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where X1 ¼ Fn; X2 ¼ ’Fn: Application of It #o’s differential rule yields the following system of
differential equations for statistical moments:

dE½X1�
dt

¼ E½X2�;

dE½X2�
dt

¼ �½oðnÞ�2½X1� � 2bE½X2�; ð8Þ

dE½X 2
1 �

dt
¼ 2E½X1X2�;

dE½X1;X2�
dt

¼ �½oðnÞ�2½X 2
1 � � 2bE½X1X2� þ E½X 2

2 �;

dE½X 2
2 �

dt
¼ 2SðnÞ

f ½X 2
1 � � 2½o

ðnÞ�2E½X1X2� � 4bE½X 2
2 �: ð9Þ

The necessary and sufficient conditions for mean-square stability are that all the eigenvalues of
the coefficient matrix system (9) have negative real parts. These stability conditions are well
known, and may be readily obtained by applying the Hurwitz criteria as

b > 0; b >
S
ðnÞ
f

2½oðnÞ�2
: ð10Þ

4. Lyapunov exponent and stochastic stability

The sign of the largest Lyapunov’s exponent has an important role in determining the stability
of the elastic system when it is subjected to parametric stochastic excitation. From the condition
when the largest Lyapunov’s exponent is negative, the system is almost stable; if it is positive, the
system is almost surely unstable. In the paper by Ariaratnam and Xie [10] the largest Lyapunov’s
exponent is determined for the elastic system whose motion is described by differential equation
(5); it states that

lF ¼ �bþ

R
N

�N
PðuÞe�HðuÞ du

R u

�N
eHðvÞ dvR

N

�N
e�HðuÞ du

R u

�N
eHðvÞ dv

; ð11Þ

where

PðuÞ ¼
ð1� g0Þu
ð1þ u2Þ

þ
ð1� u2ÞSðnÞ

f

ð1þ u2Þ2
; HðuÞ ¼

1

3S
ðnÞ
f

ð3g0u þ u3Þ; g0 ¼ �b2 þ ½oðnÞ�2:

The integrals in relation (11) cannot be calculated explicitly. By applying asymptotic
development to the integrals in Eq. (11), Ariaratnam and Xie determined the asymptotic value
for Lyapunov’s exponents lFn

in the first order approximation, taking only the first terms in the
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asymptotic evaluation, when S
ðnÞ
f -0

lFn
¼ �bþ

S
ðnÞ
f

1þ
ffiffiffiffi
g0

p� 	2; g0 > 0;

lFn
¼ �bþ

ffiffiffiffiffiffiffiffi
�g0

p
þ

S
ðnÞ
f ð1þ g0Þ

ð1� g0Þ
2
; g0o0: ð12Þ

By applying asymptotic method Perevala [11], values for Lyapunov’s exponents lFn
were

obtained in the first order approximation, which is the same as the one obtained by the other
approximate method (12), by Ariaratnam and Xie [10]. The same asymptotic method in the
second order approximation, taking the second term in asymptotic evaluation, the next value for
Lyapunov’s exponents lFn

was obtained, when S
ðnÞ
f -0

lFn
¼ �bþ

S
ðnÞ
f

1þ
ffiffiffiffi
g0

p� 	2 1þ 1þ
ffiffiffiffi
g0

p� 	
1þ 3g0

 �

� 8g0

4g0 1�
ffiffiffiffi
g0

p� 	
2
4

3
5; g0 > 0;

lFn
¼ � bþ

ffiffiffiffiffiffiffiffi
�g0

p
þ

S
ðnÞ
f ð1þ g0Þ

ð1� g0Þ
2

þ
4

ffiffiffiffiffiffiffiffi
S
ðnÞ
f

q
ð�g0Þ

1=4

ð1� 16g0Þ

�
1þ g0
1� g0

� 2SðnÞ
f

ð3þ g0Þ
ffiffiffiffiffiffiffiffi
�g0

p
ð1� g0Þ

3

" #
; g0o0: ð13Þ

If one uses relations (13) for Lyapunov’s exponent, the conditions for almost sure stochastic
stability of torsion oscillations of the moving thin elastic band can be determined in the second
order approximation

b >
S
ðnÞ
f

1þ
ffiffiffiffi
g0

p� 	2 1þ 1þ
ffiffiffiffi
g0

p� 	
ð1þ 3g0Þ � 8g0

4g0 1�
ffiffiffiffi
g0

p� 	
2
4

3
5; g0 > 0;

b >
ffiffiffiffiffiffiffiffi
�g0

p
þ

S
ðnÞ
f ð1þ g0Þ

ð1� g0Þ
2

þ
4

ffiffiffiffiffiffiffiffi
S
ðnÞ
f

q
ð�g0Þ

1=4

ð1� 16g0Þ

�
1þ g0
1� g0

� 2SðnÞ
f

ð3þ g0Þ
ffiffiffiffiffiffiffiffi
�g0

p
ð1� g0Þ

3

" #
; g0o0: ð14Þ

5. Numerical example

As a numerical example, determine the conditions for stochastic stability of torsion
oscillations of a moving thin elastic band whose characteristics are stated by Ariaratnam
and Asokanthan [4].
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Band thickness b ¼ 1:4 mm:
Band width h ¼ 228:6 mm:
Band length between supports L ¼ 914 mm:
Young’s modulus E ¼ 2:05� 1011 N m�2:
The Poisson ratio u ¼ 0:3
Mass density r ¼ 7800 kg m�3:
Speed of moving band c ¼ 35 m s�1:
Initial band tension s0 ¼ 5� 107 N m�2:

The values of the first two non-dimensional eigenfrequencies of torsion oscillations oð1Þ and oð2Þ

are calculated by using relation (6); for the above-given band parameters values 10.63 and 34.06
follow in order. Fig. 2 shows particular sections of stochastic stability of torsion oscillations of the
moving thin elastic band by applying the moment equations method and by using Lyapunov’s
coefficient, determined by the asymptotic method.

6. Conclusion

The regions of stochastic stability of torsional oscillations of a moving thin elastic
band are determined when it is subjected to a random axially tensile force, which is a
stochastic process of small intensity. These regions are determined by using the moment
equations method and by the largest Lyapunov’s exponent. The value of Lyapunov’s
exponent is determined by taking the second term in asymptotic evaluation to the
integrals (11). The obtained results show that the region of stochastic stability is largest
when it is determined on the basis of Lyapunov’s exponent in a second order approximation.
Notice that a larger stability region is obtained by the moment equations method comparable
to the one determined by using Lyapunov’s exponent in the first approximation. Likewise,
notice that, at higher eigenfrequencies of the system, it has a larger stability zone determined
by both the methods.
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Fig. 2. Stochastic stability regions of torsional oscillations of a moving thin elastic band. ——, Mean-square stability;

?�; stability region determined by using Lyapunov exponents in a first approximation; - - - -, stability region
determined by using Lyapunov exponents in a second approximation.
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